Болезни пищевого происхождения часто называют пищевыми отравлениями. Пищевые отравления могут быть вызваны химическими веществами, бактериями или определенными пищевыми продуктами, например, ядовитыми грибами. Также любой продукт питания может содержать ряд инфекционных агентов вирусной природы [8, 10].

О случаях выявления в продуктах питания вирусов известно намного меньше, чем о выявлении других микроорганизмов. Это связано с тем, что вирусы, в отличие от бактерий, не способны размножаться на питательных средах и для их культивирования используют чувствительные клетки. Также вирусы не размножаются в продуктах питания и их количество намного меньше, чем бактерий, потому для их выделения нужны методы экстракции и концентрирования. Следует отметить, что лабораторные вирусологические методики нельзя применить во многих микробиологических лабораториях, которые исследуют пищевые продукты. Из литературы известно [2, 8], что среди энтеровирусов наиболее часто встречаются возбудители болезней пищевого происхождения — это норовирус Norwalk (NOV) и вирус гепатита, А (HAV). Через пищевые продукты могут передаваться и другие вирусы — такие, как ротавирус, вирус гепатита Е (HEV), астровирус, вирус Айчи, саповирус, энтеровирус, коронавирус, парвовирус, аденовирус и другие [2, 3, 4].

Основные пути передачи вирусов в организм человека

В зависимости от симптомов заболевания, вирусы, передающиеся через пищевые продукты, можно распределить по следующим группам: возбудители гастроэнтерита (NOV), возбудители кишечного вирусного гепатита (HAV с репликацией в печени) и третья группа вирусов — с репликацией в кишечнике человека, которые становятся возбудителями заболеваний лишь после миграции в другие органы, такие, как центральная нервная система (энтеровирус) [2, 3, 8].

Основными вирусами пищевого происхождения являются те, которые проникают через желудочно-кишечный тракт и выделяются с фекальными и рвотными массами, также те, которые инфицируют человека при пероральном проникновении. Широко распространено бессимптомное инфицирование и выделение вирусов, на которое необходимо обращать внимание при производстве продуктов питания [3].

Для размножения (репликации) вирусам необходимо проникнуть в живые клетки. В отличие от бактерий они не могут развиваться в пище. Следовательно, вирусы не вызывают ухудшения состояния продукта, и органолептические свойства еды не изменяются от вирусного заражения.

Энтеровирусы человека, такие как NOV и HAV, имеют высокую инфекционную активность, и наиболее распространенным путем инфицирования является их передача от одного человека к другому. Вторичное распространение этих вирусов после их первичного проникновения, например, с зараженной инфицированной едой, является обычной практикой, и приводит к активным и длительным вспышкам заболевания [2, 3, 5].

Простые вирусы, такие, как NOV и HAV, имеют только одну белковую оболочку — капсид. Сложные вирусы, например, вирус гриппа, кроме внутренней оболочки, имеют еще и внешнюю оболочку (биомембрану), которая является дериватом чувствительной клетки. Наличие у вирусов как капсидной, так и мембранной структуры повышает их устойчивость к среде обитания и сопротивляемость к очистке и дезинфекции. При этом простые вирусы проявляют повышенную сопротивляемость к действию растворителей (например, хлороформу) и обезвоживанию.

Вирусы, могут в течение нескольких месяцев храниться в пищевых продуктах или в окружающей среде (например, в почве, воде, осаждениях, двустворчатых моллюсках или на разных поверхностях). Большинство вирусов пищевого происхождения более стойкие, чем бактерии, к охлаждению, замораживанию, изменению pH, высушиванию, ультрафиолетовому облучению, нагреванию, изменению давления, дезинфекции и так далее [3, 9].

Температуры замораживания и охлаждения не приводит к инактивации вирусов, и считаются важными факторами, которые повышают стойкость вирусов пищевого происхождения к условиям окружающей среды. Нагревание и высушивание могут применяться для инактивирования вирусов, однако, уровень стойкости к таким процедурам у разных вирусов неодинаковый.

Традиционная практика мытья рук может быть эффективнее в борьбе с вирусами по сравнению с обработкой рук дезинфицирующими средствами. Большинство химических дезинфицирующих средств, которые применяются на объектах пищевой промышленности, не обеспечивают эффективную инактивацию вирусов без оболочки, таких, как NOV или HAV.

Зоонозный путь передачи пищевых вирусов менее распространен, чем для патогенных микроорганизмов, таких, как Salmonella и Campylobacter, однако таким образом передается вирус HEV.

Выделение вирусов из пищевых продуктов

Совершенствование методов выделения вирусов, которые основываются на применении ревертазной полимеразной цепной реакции (ПЦР), позволило непосредственно обнаруживать ряд вирусов в пищевых продуктах [1]. Эффективность методики выявления вирусов с помощью ревертазной ПЦР в продуктах питания была доказана многочисленными исследованиями [3].

Естественным источником, способным накапливать энтеровирусы, могут быть моллюски, поскольку они являются биофильтрами водоемов. В искусственно инфицированных полиовирусом (104 бляшкообразующих единиц, БОЕ) устрицах инфекционные свойства вирусов наблюдались на протяжении 30–90 дней в условиях хранения устриц при пониженной температуре [9]. Хотя, маловероятно поглощение энтеровирусов устрицами и моллюсками, в случае, когда концентрация вирусов в открытом водоеме менее 0,01 БОЕ/мл [5].

При исследовании сырых устриц в каждом из 17 образцов был выявлен ЕСНО-вирус и полиовирус 1, при этом полиовирус 3 был найден в одном из 24 исследуемых образцов [9].

Обычно индекс БГКП является достоверным показателем наличия кишечной палочки в воде, но он не распространяется на энтеровирусы, которые являются более стойкими к неблагоприятным экологическим условиям, чем патогенные бактерии [10]. При исследовании больше 150 образцов рекреационных вод из Техасского залива энтеровирусы были выявлены в 43% образцов, при этом 44% образцов имели допустимые показатели индекса БГКП. Следует отметить, что энтеровирусы были выявлены в 35% образцов воды, которые удовлетворяли стандартам чистоты по показателям индекса БГКП для промышленного получения моллюсков. Из этого следует, что показатель коли-индекса не коррелирует с наличием в водоемах вирусов [9].

При исследовании моллюсков в открытых и закрытых водоемах в 23% образцов из открытых водоемов были выделены энтеровирусы, при этом в исследуемых образцах отсутствовали бактерии рода Salmonella, Shigella, Yersinia, которые вызывают кишечные заболевания. В 40% образцов моллюсков из закрытых водоемов были выделены бактерии рода Salmonella, при этом в исследованных образцах не было обнаружено бактерий родов Shigella и Yersinia. Следует также отметить, что корреляции между титром энтеровирусов и общим числом колиформ в моллюсках не обнаружено [5, 9].

Способность вирусов сохраняться в пищевых продуктах

Энтеровирусы могут храниться в говядине до 8 дней при температуре 23–24 °С, при этом на их инфекционные свойства не влияет размножение бактерий, которые вызывают порчу продукта. Вирус Коксаки В5 сохраняет свои инфекционные свойства на овощах при температуре 4 °С на протяжении 5 дней [3].

При исследовании инфекционных свойств вируса холеры свиней (HCV) и вируса африканской свиной лихорадки (ASFV) в мясе больных животных, было показано, что даже после промышленной обработки вирусы сохраняют свою жизнеспособность. Из мяса инфицированных указанными вирусами животных была изготовлена пастеризованная ветчина, сухая колбаса и колбаса типа салями, при этом вирусы не были выявлены в пастеризованной ветчине, но были выделены из ветчины после посола. Вирус ASFV был выделен в двух колбасных продуктах после добавления ингредиентов посола и стартовых культур, но не выявлялся после 30 дней ферментации колбасы. Следует отметить, что вирус HCV также оставался активным после внесения ингредиентов для посола и посевных культур, но сохранял способность к заражению даже после 22 дней ферментации мяса [6].

Исследования инфекционных свойств вируса ящура в зависимости от температуры показали, что термическая обработка зараженной говядины при температуре 93,3 °С приводит к полному инактивированию вируса. Однако, в лимфоузлах крупного рогатого скота вирус выдерживал нагревание до 90 °С на протяжении 15 минут [1]. Кипячение крабов на протяжении 8 минут оказалось достаточным, чтобы инактивировать полиовирус 1, ротавирус и ЕСНО-вирус [7, 9]. При этом полиовирус способен выдерживать тушение, прожарку, запекание и пропаривание устриц [9]. Следует отметить, что в жареных гамбургерах энтеровирусы были выявлены в 8 из 24 не прожаренных пирожков (до температуры внутри пирожка 60 °С) при их быстром охлаждении до 23 °С. Вирусов не было выявлено при охлаждении пирожков на протяжении 3 минут при комнатной температуре [5].

Следует отметить, что проверка продуктов питания на наличие вирусов является сложной процедурой, которая требует матричного анализа проб и концентрирования вирусов, а также основана на выявлении вирусных нуклеиновых кислот. В настоящее время отсутствуют простые и доступные методы оценки уровня инактивации вирусов в пищевых продуктах. Таким образом, главной задачей вирусологических исследований пищевых продуктов является разработка простых методов выявления вирусов, а также способов их инактивирования.

Литература

  1. A highly sensitive and specific multiplex RT-PCR to detect foot-and-mouth disease virus in tissue and food samples / H.-F. Bao, D. Li, J.-H. Guo, Z.-J. Lu, Y.-L. Chen, Z.-X. Liu, X.-T. Liu, Q.-G. Xie. // Archives of Virology. — 2008. — v. 153, № 1. — 205–209.
  2. A 549 and PLC/PRF/5 cells can support the efficient propagation of swine and wild boar hepatitis E virus (HEV) strains: demonstration of HEV infectivity of porcine liver sold as food / Hideyuki T., Toshinori T., Suljid J., Shigeo N., Masaharu T., Tsutomu N., Hitoshi M., Yasuyuki Y., Hiroaki O. / // Archives of Virology. — 2012. -v. 157, № 2. — 235–246.
  3. Bstection of hepatitis A virus RNA in oyster meat. / Cromeans, T.L., Nainan O.V, Margolis H.S. // Appl. Environ. Microbiol. — 1998. — v. 63. — 2460–2463.
  4. Enterovirus: Poliovirus, coxsackievirus, echovirus / Percival S., Chalmers R., Embrey M., Hunter P., Sellwood J., Wyn-Jones P. // Microbiology of Waterborne Diseases. — 2004. — Р. 401–418.
  5. Foodborne viruses and fresh produce / Seymour I.J., Appleton H. // Appl. Microbiol. — 2001. — v. 91. — Р. 759–773.
  6. Hepatitis A virus detection in food: current and future prospects / G. Sánchez, A. Bosch, R. M. Pintó //Letters in Applied Microbiology. — 2007. — v. 45, № 1. — Р. 1–5.
  7. Reduction of Norwalk virus, polioviras 1, and bacteriophage MS2 by ozone disinfection of water / Shin G.-A., Sobsey M.D. // Appl. Environ. Microbiol. — 2003. — v. 69. — Р. 3975–3978.
  8. Reported behavior, knowledge and awareness toward the potential for norovirus transmission by food handlers in Dutch catering companies and institutional settings in relation to the prevalence of norovirus / L.Verhoef, G. J. Gutierrez, M.Koopmans, I.Boxman. // Food Control. — 2013. — v. 34, № 2. — Р. 420–427.
  9. Survival of human enteric viruses in the environment and food / Rze?utka A., Cook N. // FEMS Microbiology Reviews. — 2004. — v. 45, № 1. — Р. 441–453.
  10. Virus hazards from food, water and other contaminated environments / D. Rodríguez-Lázaro, N. Cook, F. M. Ruggeri, J.Sellwood, A.Nasser [et al.]. // FEMS Microbiology Reviews. — 2012. -v. 34, № 4. — 786–814.

Literature

  1. A highly sensitive and specific multiplex RT-PCR to detect foot-and-mouth disease virus in tissue and food samples / H.-F. Bao, D. Li, J.-H. Guo, Z.-J. Lu, Y.-L. Chen, Z.-X. Liu, X.-T. Liu, Q.-G. Xie. // Archives of Virology. — 2008. — v. 153, № 1. — 205–209.
  2. A 549 and PLC/PRF/5 cells can support the efficient propagation of swine and wild boar hepatitis E virus (HEV) strains: demonstration of HEV infectivity of porcine liver sold as food / Hideyuki T., Toshinori T., Suljid J., Shigeo N., Masaharu T., Tsutomu N., Hitoshi M., Yasuyuki Y., Hiroaki O. / // Archives of Virology. — 2012. -v. 157, № 2. — 235–246.
  3. Bstection of hepatitis A virus RNA in oyster meat. / Cromeans, T.L., Nainan O.V, Margolis H.S. // Appl. Environ. Microbiol. — 1998. — v. 63. — 2460–2463.
  4. Enterovirus: Poliovirus, coxsackievirus, echovirus / Percival S., Chalmers R., Embrey M., Hunter P., Sellwood J., Wyn-Jones P. // Microbiology of Waterborne Diseases. — 2004. — Р. 401–418.
  5. Foodborne viruses and fresh produce / Seymour I.J., Appleton H. // Appl. Microbiol. — 2001. — v. 91. — Р. 759–773.
  6. Hepatitis A virus detection in food: current and future prospects / G. Sánchez, A. Bosch, R. M. Pintó //Letters in Applied Microbiology. — 2007. — v. 45, № 1. — Р. 1–5.
  7. Reduction of Norwalk virus, polioviras 1, and bacteriophage MS2 by ozone disinfection of water / Shin G.-A., Sobsey M.D. // Appl. Environ. Microbiol. — 2003. — v. 69. — Р. 3975–3978.
  8. Reported behavior, knowledge and awareness toward the potential for norovirus transmission by food handlers in Dutch catering companies and institutional settings in relation to the prevalence of norovirus / L.Verhoef, G. J. Gutierrez, M.Koopmans, I.Boxman. // Food Control. — 2013. — v. 34, № 2. — Р. 420–427.
  9. Survival of human enteric viruses in the environment and food / Rze?utka A., Cook N. // FEMS Microbiology Reviews. — 2004. — v. 45, № 1. — Р. 441–453.
  10. Virus hazards from food, water and other contaminated environments / D. Rodríguez-Lázaro, N. Cook, F. M. Ruggeri, J.Sellwood, A.Nasser [et al.]. // FEMS Microbiology Reviews. — 2012. -v. 34, № 4. — 786–814.

Библиографическая ссылка

Волошина И. Н., Скроцкая О. И., Пищевые продукты, как источник вирусных инфекций // «Живые и биокосные системы». — 2014. — № 9; URL: http://www.jbks.ru/archive/issue-9/article-13.